

JAH-P-XIX Seat No. _____

B. Sc./M. Sc. (Applied Physics) (Sem. V) (CBCS) Examination

November - 2019

Paper XIX - Applied Condensed Matter Physics (New Course)

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]

Instructions: (1) All questions are compulsory.

- (2) Numbers in the right indicate marks.
- 1 Attempt any seven short questions:

14

- l. List various point defects in solid
- 2. Define Crystal Lattice and unit cell.
- 3. What are color centres.?
- 4. Draw (111) and (001) planes in cubic unit cell.
- 5. What are the Brillion zone?
- 6. Define Bravais and Non Bravais lattices.
- 7. What is isotope effect in superconductor?
- 8. What is Meissner effect?
- 9. What are ferrites?
- 10. Define point group and Space group.
- 2 (A) Write answers of any TWO:

10

- 1. Derive an expression for the concentration of Vacancy defects in crystalline Solid.
- 2. Explain in detail, the formation of Schottky and Frenkel defects in solid
- 3. Describe Type I and Type II superconductivity with suitable examples.
- 4. Draw a well labelled diagram of NaCl unit cell and describe its features.

JAH-P-XIX] 1 [Contd....

(B)	Write answer of any ONE:		4
	1.	What are Miller Indices.? How to find the Miller	
		Indices of crystal plane making intercepts of $2x$ on	
		X-axis, 3y on Y-axis and 2z on Z-axis.	
	2.	If the average energy required to create a vacancy	
		in metal is 1 eV, calculate the ratio of vacancies	
		created in metal at 1000 and 500 K.	
(A)	Wri	te answers of any TWO	10
(11)	1.	Prove that, zero resistance and perfect	10
	1.	diamagnetism are necessary but independent	
		properties of superconductor.	
	2.	Explain qualitatively, the BCS theory of	
	۵.	superconductivity.	
	3.	Draw well labelled diagrams of seven crystal systems	
	ο.	and write the relationships between lattice	
		parameters and bond angles for them.	
	4.	Describe various X-Ray Diffraction methods with a	
	4.	detailed note on Powder diffraction method.	
(B)	Write answer of any ONE		4
(D)		·	4
	1.	Define superconductivity and hence describe various	
	0	applications of superconductivity.	
	2.	State and prove the Bragg's law of X-Ray diffraction.	
(A)	Write answers of any TWO		10

4

3

- 1. Draw a well labelled E-K diagram for cubic crystal and show the first and second Brillouin zones.
- 2. Classify various magnetic materials giving suitable examples.
- Using Kronig-Penney model, describe the formation 3. of allowed and forbidden energy bands in solids.
- Write a note on Antiferromagnetism and 4. Ferrimagnetism.

(B) Write answer of any ONE

- 4
- 1. Write a note: Pramagnetism in Rare earth group ions and Iron group ions.
- 2. What are various symmetry elements in solid? Explain using proper diagrams.

5 (A) Write answers of any TWO

10

- 1. What are Cooper pairs? Write a note on the properties of superconductor.
- 2. Describe in brief various methods of energy band calculations.
- 3. Derive an expression for the concentration of Schottky defects in solids.
- 4. Explain the formation of Color Centres. Describe Edge and Screw Dislocation defects.

(B) Write answer of any ONE

4

- 1. Prove the Bloch theorem for periodic potential and write the properties of Bloch function.
- 2. Write a note on Effective Mass of Electron.